Первая программа в которой появился поиск. Как программисты пишут программы? (4 фото). А теперь – Chaos

Dr.Web - один из первых антивирусов в истории

Dr.Web вряд ли был бы создан, если бы до этого не возникли первые вирусы, которые, в свою очередь, не появились бы, не будь для них среды существования - то есть, компьютеров и компьютерных сетей.

По случаю дня рождения антивируса Dr.Web, который мы отмечаем в апреле, предлагаем вам совершить небольшой экскурс в историю и вспомнить вирусных и антивирусных «пионеров», оставивших яркий след в скоротечной и насыщенной событиями компьютеризации нашего общества. Они были первыми - в самых разных ипостасях, с самыми разными намерениями и зачастую намного опережали свое время!

Идеи витали в воздухе...

Идею самовоспроизводящихся программ изложил «отец» компьютера Джон фон Нейман. Материалы лекций на эту тему, которые он читал начиная с 1949 года, Нейман обобщил в научном труде «Теория самовоспроизводящихся автоматических устройств» более 60 лет назад - в 1951 году.

Появление термина «вирус» по отношению к компьютерной программе было неизбежно. Кто употребил его первым - сказать сложно. Есть мнение, что впервые он применен в фантастическом рассказе писателя и ученого Грегори Бенфорда «Человек в шрамах», опубликованном в 1970 году. Кстати, в этом же рассказе упоминается и программа борьбы с вирусом - «Вакцина»!

Первые вирусы

В 1961 году была создана игра Darwin, в которой несколько программ, названных «организмами», загружались в память компьютера. Организмы одного вида, созданные одним игроком, должны были уничтожать представителей другого вида и захватывать жизненное пространство.

В 1971 году появилась первая программа, которую можно считать вирусом в современном понимании - The Creeper. Она не причиняла вреда, а лишь выводила сообщение на экран:

I`M THE CREEPER: CATCH ME IF YOU CAN

Но она уже умела самостоятельно распространяться по сети, став первым сетевым вирусом в истории.

Она же породила и первый антивирус - программу Reaper, являющуюся по сути таким же сетевым вирусом. Reaper распространялась по сетям, никак себя не проявляя, а если ей удавалось найти на компьютере The Creeper - она его стирала.

Вирусы распространяются

А это уже серьезно


Первыми известными настоящими вирусами являются Virus 1,2,3 и Elk Cloner для ПК Apple II - того самого будущего «мака», вирусов для которых, якобы, не существует. Оба вируса появились в 1981 году.

Первая эпидемия

К середине 80-х годов широкое распространение получили компьютеры IBM PC, что стало одной из причин возникновения вирусных эпидемий.

Первой эпидемией компьютерных вирусов можно считать произошедшую в 1987 году эпидемию достаточно безвредного вируса Brain, который за год своего существования поразил множество компьютеров по всему миру, хотя изначально создавался для определения уровня компьютерного пиратства в Пакистане.

Исследования начинаются

В дипломной работе по теме «Самовоспроизводящиеся программы», подготовленной студентом Дортмундского университета Юргеном Краусом в 1980 году, наряду с теоретическими выкладками перечислялись и реально существовавшие на тот момент самовоспроизводящиеся программы для компьютера Siemens. Именно в этой работе впервые была проведена параллель между живой клеткой и самовоспроизводящейся компьютерной программой.

Ясное определение термина «компьютерный вирус» было дано в 1983 году Фредом Коэном, на тот момент - аспирантом Университета Южной Калифорнии:

«Мы определяем компьютерный вирус как программу, которая может “инфицировать” другую, внедряя в нее свою копию. Инфекция может распространяться через ЭВМ или сеть... Каждая инфицированная программа может вести себя как вирус, благодаря чему инфекция распространяется».

Фред Коэн, «Компьютерные вирусы, теория и эксперименты»

Незадолго до Dr.Web

В 1988 году была разработана первая версия отечественного антивируса Aidstest. Автор этой легендарной программы - Д.Н. Лозинский. Она использовалась практически на всех персональных компьютерах в СССР, а затем в странах СНГ, оставаясь вне конкуренции долгие годы. Разработка Лозинского помогла многим пользователям, в частности в государственном и коммерческом секторах, справиться с вирусной проблемой на начальном этапе ее появления. Сегодня Д.Н. Лозинский является заместителем генерального директора «Доктор Веб».

Дмитрий Николаевич Лозинский - один из тех, кто определил развитие отечественного программирования и стоял у истоков первых российских антивирусных решений.

В СССР у истоков компьютерной вирусологии (с 1989 года) стоял Н.Н. Безруков. Его семинар «Системное программирование» и электронный бюллетень «Софтпанорама» в значительной степени были посвящены вопросам компьютерной вирусологии. В нем были представлены разработчики тогдашних отечественных антивирусов, включая Д.Н. Лозинского.

Позже Н.Н. Безруков написал фундаментальный труд «Компьютерная вирусология», который вышел в 1991 году и оказал большое влияние на Игоря Данилова.

Первая версия Spider’s Web

В 1992 году была разработана первая версия антивирусной системы Spider’s Web, включавшая в себя резидентный сторож Spider и доктор (сканер по современной терминологии) Web.

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них использовались перфокартыдля хранения числовой информации.

Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них.

Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие.

Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM - ныне самого известного в мире производителя компьютеров.

Непосредственными предшественниками ЭВМ были релейные вычислительные машины.

К 30-м годам XX века получила большое развитие релейная автоматика, которая позволяла кодировать информацию в двоичном виде.

В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое.

В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы.

Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Первая ЭВМ - универсальная машина на электронных лампах построена в США в 1945 году.

Эта машина называлась ENIAC (расшифровывается так: электронный цифровой интегратор и вычислитель). Конструкторами ENIAC были Дж.Моучли и Дж.Эккерт.

Скорость счета этой машины превосходила скорость релейных машин того времени в тысячу раз.

Первый электронный компьютер ENIAC программировался с помощью штеккерно-коммутационного способа, то есть программа строилась путем соединения проводниками отдельных блоков машины на коммутационной доске.

Эта сложная и утомительная процедура подготовки машины к работе делала ее неудобной в эксплуатации.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были разработаны крупнейшим американским математиком Джоном фон Нейманом

В 1946 году в журнале «Nature» вышла статья Дж. фон Неймана, Г. Голдстайна и А. Беркса «Предварительное рассмотрение логической конструкции электронного вычислительного устройства».

В этой статье были изложены принципы устройства и работы ЭВМ. Главный из них - принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ . Идеи, изложенные в упомянутой выше статье, получили название «архитектура ЭВМ Дж. фон Неймана».

В 1949 году была построена первая ЭВМ с архитектурой Неймана - английская машина EDSAC.

Годом позже появилась американская ЭВМ EDVAC. Названные машины существовали в единственных экземплярах. Серийное производство ЭВМ началось в развитых странах мира в 50-х годах.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ - малая электронная счетнаямашина. Конструктором МЭСМ былСергей Алексеевич Лебедев

Под руководством С.А. Лебедева в 50-х годах были построены серийные ламповые ЭВМ БЭСМ-1 (большая электронная счетная машина), БЭСМ-2, М-20.

В то время эти машины были одними из лучших в мире.

В 60-х годах С.А.Лебедев руководил разработкой полупроводниковых ЭВМ БЭСМ-ЗМ, БЭСМ-4, М-220, М-222.

Выдающимся достижением того периода была машина БЭСМ-6. Это первая отечественная и одна из первых в мире ЭВМ с быстродействием 1 миллион операций в секунду. Последующие идеи и разработки С.А. Лебедева способствовали созданию более совершенных машин следующих поколений.

Электронно-вычислительную технику принято делить на поколения

Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники.

Это всегда приводило к росту вычислительной мощности ЭВМ, то есть быстродействия и объема памяти.

Но это не единственное следствие смены поколений. При таких переходах, происходили существенные изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

Первое поколение ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).

Для ввода программ и данных использовались перфоленты и перфокарты.

Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных.

Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт

Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа.

Поэтому программирование в те времена было доступно немногим.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.

Второе поколение ЭВМ

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения .

Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими

Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду.

Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы.

Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ.

Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее.

Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ создавалось на новой элементной базе - интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы.

Их назвали интегральными схемами (ИС)

Первые ИС содержали в себе десятки, затем - сотни элементов (транзисторов, сопротивлений и др.).

Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами - БИС; затем появились сверхбольшие интегральные схемы - СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС.

Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ.

Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.

Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду.

На машинах третьего поколения появился новый тип внешних запоминающих устройств - магнитные диски .

Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации.

Но накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ.

Широко используются новые типы устройств ввода-вывода: дисплеи , графопостроители .

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11.

В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система Малых ЭВМ). Они меньше, дешевле, надежнее больших машин.

Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами.

Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

Четвертое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора .

Микропроцессор - это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера - процессора

Микропроцессор - это миниатюрный мозг, работающий по программе, заложенной в его память.

Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты . Такие микропроцессоры осуществляют автоматическое управление работой этой техники.

Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ

МикроЭВМ относятся к машинам четвертого поколения.

Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна.

Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры

Появление феномена персональных компьютеров связано с именами двух американских специалистов: Стива Джобса и Стива Возняка.

В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году - Apple-2.

Сущность того, что такое персональный компьютер, кратко можно сформулировать так:

ПК - это микроЭВМ с «дружественным» к пользователю аппаратным и программным обеспечением.

В аппаратном комплекте ПК используется

    цветной графический дисплей,

    манипуляторы типа «мышь»,

    «джойстик»,

    удобная клавиатура,

    удобные для пользователя компактные диски (магнитные и оптические).

Программное обеспечение позволяет человеку легко общаться с машиной, быстро усваивать основные приемы работы с ней, получать пользу от компьютера, не прибегая к программированию.

Общение человека и ПК может принимать форму игры с красочными картинками на экране, звуковым сопровождением.

Неудивительно, что машины с такими свойствами быстро приобрели популярность, причем не только среди специалистов.

ПК становится такой же привычной бытовой техникой, как радиоприемник или телевизор. Их выпускают огромными тиражами, продают в магазинах.

С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM.

Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer).

В конце 80-х - начале 90-х годов большую популярность приобрели машины фирмы Apple Corporation марки Macintosh. В США они широко используются в системе образования.

Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

Именно ПК сделали компьютерную грамотность массовым явлением.

С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей деятельности человека.

Есть и другая линия в развитии ЭВМ четвертого поколения. Это - суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду.

Первой суперЭВМ четвертого поколения была американская машина ILLIAC-4, за ней появились CRAY, CYBER и др.

Из отечественных машин к этой серии относится многопроцессорный вычислительный комплекс ЭЛЬБРУС.

ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень.

Машины пятого поколения - это реализованный искусственный интеллект.

Многое уже практически сделано в этом направлении.

Программу сноса жилых домов эпохи массового индустриального домостроения чаще всего обсуждают только в одной тональности: насколько справедливыми будут условия переселения людей, чьи дома попадут под ковши бульдозеров.


Сюрпризы реновации. Обсуждение законопроекта

Тем не менее у тех жителей столицы, кто внимательно изучил законопроект, сразу же возникло огромное количество вопросов к нему. И самый главный из них: не нарушает ли решение о массовом сносе находящегося в собственности жилья конституционные права москвичей? Все "за" и "против" в студии "Правды.Ру" обсудили депутат Московской городской думы Елена Шувалова и член комитета кредиторов коммерческого банка "Гагаринский", активист Сергей Хабаров.

— Что же не так в этой программе реновации?

Елена Шувалова: Идет не просто дезинформация, а обман на самых разных уровнях. Это не просто какая-то программа сноса хрущевок. Если быть корректным, то речь идет о принятии закона в Государственной думе, о введении изменений в закон о статусе столицы и так далее. Про хрущевки нет ни одного слова. И если уже брать только аспект сноса, то там говорится, что под реновацию попадают дома, которые были построены в период с 1958-го по 1968 год.

Эта программа ставит нормы права города Москвы выше норм права РФ, создает некое государство в государстве и сажает на вулкан всех москвичей, которые могут в любой момент быть депортированы и экспроприированы.

— У тех жителей столицы, кто внимательно изучил законопроект, возникло огромное количество вопросов к нему, и самый главный из них — не нарушает ли реновация Конституцию? Дело в том, что собственникам в домах, включенных в программу реновации, планируется направлять предложения о предоставлении равнозначного помещения с приложением проекта договора о переходе права собственности, а если люди не будут соглашаться и подписывать этот договор, то их будут заставлять в принудительном порядке. Как это коррелируется с нормами права?

Сергей Хабаров: В Конституции написано, что никаким образом нельзя ограничивать право граждан на судебную защиту. Но в документе о реновации прямым текстом говорится, что определенным образом это право может ограничиваться. Дело даже не только в Конституции, там также есть вопрос, вступающий в противоречие с Земельным и Жилищным кодексами.

Е. Ш.: Я бы сказала гораздо жестче: там попираются все нормы судопроизводства.

— Буквально несколько месяцев назад ничего этого не было, но вдруг в какой-то спешке готовится законопроект, на головы москвичей вываливается много информации, идет массированная атака в медиапространстве.

С. Х.: В феврале проходил девятый отчетный выборный съезд Совета муниципальных образований города Москвы, где был поднят вопрос о пятиэтажках, о второй волне сноса. На него был получен ответ от Марата Хуснуллина, который руководит строительным комплексом Москвы: "У нас сейчас нет возможности реализовать эту программу по трем причинам. Первая — это требует грандиозных ресурсов, которых у Москвы просто нет. Второе: порядка 20% от стоимости программы уходит на суды, люди против, с ними приходится как-то договариваться. Наконец, отсутствуют стартовые площадки". В феврале всего этого не было, а 10 марта внезапно был внесен данный проект закона. Разработать проект закона — это не такое простое занятие, его на коленке не напишешь, а тут люди сработали с какой-то уникальной скоростью.

— Есть еще такой момент: если в течение шестидесяти дней со дня направления предложения заключить договор, и он не будет подписан, то столичные власти имеют право обратиться в суд с требованием о принуждении заключения договора. А как же тогда быть с утверждением, что договор — это продукт непротивления двух сторон?

С. Х.: Непонятно, каким образом они собираются это в судах реализовывать. Суд — независимая инстанция, и не факт, что суды будут вставать на сторону города. Еще более сложный вопрос связан с тем, что вторая волна переселения пятиэтажек отличается от первой. В первой волне было очень много плохих домов. Практически все эти пятиэтажки находились в таком ужасном состоянии, что люди действительно хотели из них уехать. Более того, город предлагал им довольно лакомые условия.

— А как принадлежность к району отражена в этом законопроекте? То есть, если человек проживает на Кутузовском проспекте, а его дом попал в эту программу, где ему тогда будет предоставляться альтернативное жилье?

Е. Ш.: Для разных районов по-разному. Кто-то получает в своем же районе или в смежных. Особенно не повезло в этом плане жителям Центрального округа и территории Новой Москвы. Кроме того, там есть формулировка "в пределах района", но никто не задумывается на тему того, что уже очень давно идут разговоры об укрупнении отдельных районов Москвы. Какие районы имеются в виду? До каких размеров их будут укрупнять? Где в итоге окажется новый дом, в котором предложат квартиру москвичам?

— Когда граждане начали выяснять, какие же дома будут включены в программу реновации, то оказалось, что это вполне крепкие постройки. После этого и поднялась волна негатива. Зачем это делают городские власти? Неужели они рассчитывали, что все как-то само по себе срастется, никто не заметит и не будет проявлять никакого недовольства?

С. Х.: Нельзя отрицать такую возможность, учитывая, что сам по себе снос пятиэтажных домов на протяжении двадцать лет проходил довольно успешно. В первой программе сноса пятиэтажек дома были совсем плохие, с убитыми коммуникациями и дырявыми стенами. Во вторую волну включены дома, построенные в 50-е годы ХХ века, у них срок годности составляет 100-150 лет. Это хорошие, крепкие дома, просто несколько обшарпанные. У них стены и фундамент в отличном состоянии. Если он водой не заливается, то все, дом может стоять. Главное, что нужно в них сделать — это переложить коммуникации и вместо деревянных рам поставить пластиковые. Но, например, в Очакове эти дома сносят в большом количестве, чуть ли не кварталами. Нужно понимать, что это просто освобождается земля для нового массового строительства.

К публикации подготовила Мария Сныткова

Ада Лавлейс

10 декабря 1815 года на свет появилась Ада Лавлейс, большинству из нас известная как самый первый в мире программист. Так уж получилось, что это звание принадлежит представительнице прекрасного пола. Сегодня исполняется двести один год со дня рождения этого человека. И в этом посте я бы хотел немного рассказать о самых интересных моментах из ее жизни, не отделываясь обрывочными фразами, но и не слишком уж углубляясь в детали. Материал можно найти, где угодно, имея под рукой Интернет. Однако мало кто полезет искать его просто ради интереса. Поэтому кому интересно, добро пожаловать под кат.

Учась в школе, сидя на уроках литературы, я прекрасно знал, кто такой Джордж Байрон.


Мы читали и по желанию заучивали его стихотворения. Спустя время, выбрав себе профессию я узнал о том, кем была загадочная Ада Лавлейс – первая девушка-программист, дочь того самого лорда Джорджа Байрона. Тогда для меня это оказалось удивительным открытием. Я на всю жизнь запомнил, кем была Ада и, как-то совсем незаметно для самого себя, забыл о самом Байроне.

Августа Ада Кинг (впоследствие графиня Лавлейс, но об этом чуть позже) – была дочерью английского поэта лорда Джорджа Гордона Байрона и его жены – Анны Изабеллы Байрон. Однако Байрон спустя месяц после рождения своей дочери покинул их, и они больше никогда не виделись. Сам Байрон умер, когда Аде было восемь лет. Сам он еще не раз вспоминал свою дочь в своих стихах.

Видно, что Ада сама росла в довольно талантливой семье. Ее мать, Анна Изабель, еще до рождения дочери сильно интересовалась математикой, за что когда-то получила от мужа забавное прозвище – “королева параллелограммов”. Это была действительно необычная семья. Анне после ухода мужа все же удалось воспитать дочь в одиночку и вот что из этого получилось.

В двенадцать лет Ада собрала свой летательный аппарат! До этого двенадцатилетняя девочка некоторое время запиралась от матери в комнате и что-то писала. Мать боялась, что она начнет зачитываться стихами отца и пойдет той же дорогой. Однако все это время она чертила.

Математическая логика занимала ее больше всего остального. Однажды Ада заболела и три года провела в постели. Но все это время она хотела и продолжала учиться. К ней приходили самые разные доктора и учителя. Одним из них был Август де Морган – известный математик и логик (да-да, закон де Моргана назван в его честь). С тех пор Ада еще больше погрузилась в мир математики.


В итоге Ада выросла уникальной девушкой. Она была красива и умна, точно также как и ее мама занималась математикой, а в разговорах на научные темы обходила даже ребят из Кембриджа и Оксфорда. Среди других людей, в основном женского пола, это вызвало скрытую злость и зависть. О ней нередко говорили как о чем-то темном, даже дьявольском. Надо сказать, что Ада и сама в себе чувствовала необычные силы (забавно, но на русском ее имя звучит и правда немного дьявольски). Но в этом нет ничего необычного, так как девушка-математик в высшем английском обществе того времени – со стороны это действительно выглядело странно. А многие мужчины меж тем были от нее без ума.

Математика математикой, но как же так вышло, что помнят о ней в первую очередь именно программисты? Одной из самых судьбоносных встреч Ады Лавлейс стала встреча с Чарльзом Бэббиджем – изобретателем первой аналитической вычислительной машины.


В то время, во Франции, куда и прибыл Бэббидж, был развернут крупномасштабный проект по созданию таблиц значений логарифмов и тригонометрических функций. Бэббидж стал мечтать о том, чтобы автоматизировать этот труд, заодно исключив возможные человеческие ошибки, так как в то время именно люди вручную занимались созданием таких таблиц. Так Бэббидж задумался о построении своей разностной машины (вычисление многочлена с помощью разностного метода).

Им было создано огромное количество чертежей, а сам прототип закончен в 1832 году, тот самый, который Ада Лавлейс увидит спустя год.

В 1835 году Ада выйдет замуж за очень достойного человека – барона Уильяма Кинга, который впоследствии был удостоен титула графа, а сама Ада стала графиней Лавлейс. Спустя четыре года у них уже было трое детей – два сына и дочь. Сыновьям Ада дала имена в честь отца – одного назвали Ральфом Гордоном, а другого – Байроном.

А как же с той самой первой в мире программой? И какова судьба машины Бэббиджа? В 1842 году итальянский ученый Луис Манебреа напишет книгу о машине Бэббиджа. Ада по просьбе Бэббиджа займется ее переводом. Во время перевода самой книги она сделала огромное количество замечаний, видя в этой машине кажется больше, чем сам Бэббидж.

Вот ее слова: «Суть и предназначение машины изменятся от того, какую информацию мы в нее вложим. Машина сможет писать музыку, рисовать картины и покажет науке такие пути, которые мы никогда и нигде не видели» Алан Тьюринг впоследствие читал ее записи, введя в свои работы термин возражение леди Лавлейс относительно способности машин мыслить.

В то же самое время, при описании машины Бэббиджа именно Ада ввела в обиход такие компьютерные термины как цикл и ячейка. Она также составил набор операций для вычисления чисел Бернулли. Именно это по сути и стало самой первой компьютерной программой. Бэббидж так и не построил свою машину, она была собрана уже после его смерти и сейчас хранится в Музее науки в Лондоне.

Сама Ада Лавлейс умерла 27 ноября 1852 года всего в возрасте 36 лет. Ровно столько, сколько прожил ее отец. Ее похоронили в фамильном склепе вместе с отцом, которого она так и не узнала.
В честь Ады Лавлейс был назван разработанный в 1980-х годах Министерством Обороны США язык программирования Ада.

P.S. Наверное, тем людям, у которых фраза “Первым программистом была девушка” вызывает недовольство или улыбку, стоит хотя бы раз поинтересоваться биографией этого человека. О таких людях, как Ада Лавлейс или Алан Тьюринг и о многих других стоит помнить. А для кого-то эти истории еще один повод понять, что в мире нет ничего невозможного.

Спасибо тем, кто прочел эту статью. Делитесь своими мнениями, комментариями или замечаниями).

Ада Лавлейс

10 декабря 1815 года на свет появилась Ада Лавлейс, большинству из нас известная как самый первый в мире программист. Так уж получилось, что это звание принадлежит представительнице прекрасного пола. Сегодня исполняется двести один год со дня рождения этого человека. И в этом посте я бы хотел немного рассказать о самых интересных моментах из ее жизни, не отделываясь обрывочными фразами, но и не слишком уж углубляясь в детали. Материал можно найти, где угодно, имея под рукой Интернет. Однако мало кто полезет искать его просто ради интереса. Поэтому кому интересно, добро пожаловать под кат.

Учась в школе, сидя на уроках литературы, я прекрасно знал, кто такой Джордж Байрон.


Мы читали и по желанию заучивали его стихотворения. Спустя время, выбрав себе профессию я узнал о том, кем была загадочная Ада Лавлейс – первая девушка-программист, дочь того самого лорда Джорджа Байрона. Тогда для меня это оказалось удивительным открытием. Я на всю жизнь запомнил, кем была Ада и, как-то совсем незаметно для самого себя, забыл о самом Байроне.

Августа Ада Кинг (впоследствие графиня Лавлейс, но об этом чуть позже) – была дочерью английского поэта лорда Джорджа Гордона Байрона и его жены – Анны Изабеллы Байрон. Однако Байрон спустя месяц после рождения своей дочери покинул их, и они больше никогда не виделись. Сам Байрон умер, когда Аде было восемь лет. Сам он еще не раз вспоминал свою дочь в своих стихах.

Видно, что Ада сама росла в довольно талантливой семье. Ее мать, Анна Изабель, еще до рождения дочери сильно интересовалась математикой, за что когда-то получила от мужа забавное прозвище – “королева параллелограммов”. Это была действительно необычная семья. Анне после ухода мужа все же удалось воспитать дочь в одиночку и вот что из этого получилось.

В двенадцать лет Ада собрала свой летательный аппарат! До этого двенадцатилетняя девочка некоторое время запиралась от матери в комнате и что-то писала. Мать боялась, что она начнет зачитываться стихами отца и пойдет той же дорогой. Однако все это время она чертила.

Математическая логика занимала ее больше всего остального. Однажды Ада заболела и три года провела в постели. Но все это время она хотела и продолжала учиться. К ней приходили самые разные доктора и учителя. Одним из них был Август де Морган – известный математик и логик (да-да, закон де Моргана назван в его честь). С тех пор Ада еще больше погрузилась в мир математики.


В итоге Ада выросла уникальной девушкой. Она была красива и умна, точно также как и ее мама занималась математикой, а в разговорах на научные темы обходила даже ребят из Кембриджа и Оксфорда. Среди других людей, в основном женского пола, это вызвало скрытую злость и зависть. О ней нередко говорили как о чем-то темном, даже дьявольском. Надо сказать, что Ада и сама в себе чувствовала необычные силы (забавно, но на русском ее имя звучит и правда немного дьявольски). Но в этом нет ничего необычного, так как девушка-математик в высшем английском обществе того времени – со стороны это действительно выглядело странно. А многие мужчины меж тем были от нее без ума.

Математика математикой, но как же так вышло, что помнят о ней в первую очередь именно программисты? Одной из самых судьбоносных встреч Ады Лавлейс стала встреча с Чарльзом Бэббиджем – изобретателем первой аналитической вычислительной машины.


В то время, во Франции, куда и прибыл Бэббидж, был развернут крупномасштабный проект по созданию таблиц значений логарифмов и тригонометрических функций. Бэббидж стал мечтать о том, чтобы автоматизировать этот труд, заодно исключив возможные человеческие ошибки, так как в то время именно люди вручную занимались созданием таких таблиц. Так Бэббидж задумался о построении своей разностной машины (вычисление многочлена с помощью разностного метода).

Им было создано огромное количество чертежей, а сам прототип закончен в 1832 году, тот самый, который Ада Лавлейс увидит спустя год.

В 1835 году Ада выйдет замуж за очень достойного человека – барона Уильяма Кинга, который впоследствии был удостоен титула графа, а сама Ада стала графиней Лавлейс. Спустя четыре года у них уже было трое детей – два сына и дочь. Сыновьям Ада дала имена в честь отца – одного назвали Ральфом Гордоном, а другого – Байроном.

А как же с той самой первой в мире программой? И какова судьба машины Бэббиджа? В 1842 году итальянский ученый Луис Манебреа напишет книгу о машине Бэббиджа. Ада по просьбе Бэббиджа займется ее переводом. Во время перевода самой книги она сделала огромное количество замечаний, видя в этой машине кажется больше, чем сам Бэббидж.

Вот ее слова: «Суть и предназначение машины изменятся от того, какую информацию мы в нее вложим. Машина сможет писать музыку, рисовать картины и покажет науке такие пути, которые мы никогда и нигде не видели» Алан Тьюринг впоследствие читал ее записи, введя в свои работы термин возражение леди Лавлейс относительно способности машин мыслить.

В то же самое время, при описании машины Бэббиджа именно Ада ввела в обиход такие компьютерные термины как цикл и ячейка. Она также составил набор операций для вычисления чисел Бернулли. Именно это по сути и стало самой первой компьютерной программой. Бэббидж так и не построил свою машину, она была собрана уже после его смерти и сейчас хранится в Музее науки в Лондоне.

Сама Ада Лавлейс умерла 27 ноября 1852 года всего в возрасте 36 лет. Ровно столько, сколько прожил ее отец. Ее похоронили в фамильном склепе вместе с отцом, которого она так и не узнала.
В честь Ады Лавлейс был назван разработанный в 1980-х годах Министерством Обороны США язык программирования Ада.

P.S. Наверное, тем людям, у которых фраза “Первым программистом была девушка” вызывает недовольство или улыбку, стоит хотя бы раз поинтересоваться биографией этого человека. О таких людях, как Ада Лавлейс или Алан Тьюринг и о многих других стоит помнить. А для кого-то эти истории еще один повод понять, что в мире нет ничего невозможного.

Спасибо тем, кто прочел эту статью. Делитесь своими мнениями, комментариями или замечаниями).

Loading...Loading...